Genetically encoded fluorescent reporters to visualize protein kinase C activation in live cells.
نویسندگان
چکیده
Protein kinase C (PKC) signaling drives many important cellular processes and its dysregulation results in pathophysiologies such as cancer (Gokmen-Polar et al., Cancer Res 61:1375-1381, 2001). Because PKC is activated acutely and allosterically, it is difficult to monitor the cellular activity of endogenous PKC by conventional methodologies (Newton, Methods Enzymol 345:499-506, 2002). Rather, PKC signaling is best studied in situ using biosensors such as FRET-based reporters. We have generated several FRET-based reporters for studying PKC signaling in real time in live cells (Violin and Newton, IUBMB Life 55:653-660, 2003). Using these reporters, we have demonstrated phase-locked oscillations in Ca2+ release and membrane-localized endogenous PKC activity in response to histamine (Violin et al., J Cell Biol 161:899-909, 2003), as well as distinct signatures of endogenous PKC signaling at specific organelles in response to uridine-5'-triphosphate (UTP; Gallegos et al., J Biol Chem 281:30947-30956, 2006). Here we describe methods to image cells expressing the reporters and elaborate on data analyses, control experiments, and variations for imaging the activity of expressed PKC.
منابع مشابه
A genetically encoded fluorescent reporter reveals oscillatory phosphorylation by protein kinase C
Signals transduced by kinases depend on the extent and duration of substrate phosphorylation. We generated genetically encoded fluorescent reporters for PKC activity that reversibly respond to stimuli activating PKC. Specifically, phosphorylation of the reporter expressed in mammalian cells causes changes in fluorescence resonance energy transfer (FRET), allowing real time imaging of phosphoryl...
متن کاملOptogenetic reporters.
The discovery of naturally evolved fluorescent proteins and their subsequent tuning by protein engineering provided the basis for a large family of genetically encoded biosensors that report a variety of physicochemical processes occurring in living tissue. These optogenetic reporters are powerful tools for live-cell microscopy and quantitative analysis at the subcellular level. In this review,...
متن کاملGenetically encoded fluorescent reporters of protein tyrosine kinase activities in living cells.
The complexity and specificity of many forms of signal transduction are widely believed to require spatial compartmentation of protein kinase and phosphatase activities, yet existing methods for measuring kinase activities in cells lack generality or spatial or temporal resolution. We present three genetically encoded fluorescent reporters for the tyrosine kinases Src, Abl, and epidermal growth...
متن کاملFluorescent Reporters and Biosensors for Probing the Dynamic Behavior of Protein Kinases
Probing the dynamic activities of protein kinases in real-time in living cells constitutes a major challenge that requires specific and sensitive tools tailored to meet the particular demands associated with cellular imaging. The development of genetically-encoded and synthetic fluorescent biosensors has provided means of monitoring protein kinase activities in a non-invasive fashion in their n...
متن کاملCalcium-dependent regulation of protein kinase D revealed by a genetically encoded kinase activity reporter.
Protein kinase D (PKD) regulates many diverse cellular functions in response to diacylglycerol. To monitor PKD signaling in live cells, we generated a genetically encoded fluorescent reporter for PKD activity, DKAR (D kinase activity reporter). DKAR expressed in mammalian cells undergoes reversible fluorescence resonance energy transfer changes upon activation and inhibition of endogenous PKD. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Methods in molecular biology
دوره 756 شماره
صفحات -
تاریخ انتشار 2011